Unit study package code: GEOP6006

Mode of study: Internal

Tuition pattern summary: Note: For any specific variations to this tuition pattern and for precise information refer to the Learning Activities section.
Lecture: 1 x 2 Hours Weekly
Computer Laboratory: 1 x 3 Hours Weekly
This unit does not have a fieldwork component.

Credit Value: 25.0

Pre-requisite units: 12455 (v.0) Introduction to Seismic Exploration 303 or any previous version
OR
GEOP3001 (v.0) Introduction to Seismic Exploration or any previous version

Co-requisite units: Nil

Anti-requisite units: Nil

Result type: Grade/Mark

Approved incidental fees: Information about approved incidental fees can be obtained from our website. Visit fees.curtin.edu.au/incidental_fees.cfm for details.

Unit coordinator:
Title: Associate Professor
Name: Andrej Bona
Phone: +618 9266 7194
Email: A.Bona@curtin.edu.au
Building: 613
Room: 4H27

Teaching Staff:
Name: Andrej Bona
Phone: +618 9266 7194
Email: A.Bona@curtin.edu.au
Building: 613
Room: 4H27

Name: Milovan Urosevic
Phone: +618 9266 2296
Email: M.Urosevic@curtin.edu.au
Building: 613
Room: 4H06

Name: Boris Gurevich
Phone: +618 9266-7359
Email: B.Gurevich@curtin.edu.au
Building: 613
Room: 4H03

Name: Sasha Ziramov
Phone: +61 8 9266 4973
Acknowledgement of Country
We respectfully acknowledge the Indigenous Elders, custodians, their descendants and kin of this land past and present.

Syllabus

Introduction
The aim of this unit is to provide the students with the knowledge and practical skills in reservoir characterisation and quantitative interpretation technologies.

Unit Learning Outcomes
All graduates of Curtin University achieve a set of nine graduate attributes during their course of study. These tell an employer that, through your studies, you have acquired discipline knowledge and a range of other skills and attributes which employers say would be useful in a professional setting. Each unit in your course addresses the graduate attributes through a clearly identified set of learning outcomes. They form a vital part in the process referred to as assurance of learning. The learning outcomes tell you what you are expected to know, understand or be able to do in order to be successful in this unit. Each assessment for this unit is carefully designed to test your achievement of one or more of the unit learning outcomes. On successfully completing all of the assessments you will have achieved all of these learning outcomes.

Your course has been designed so that on graduating we can say you will have achieved all of Curtin’s Graduate Attributes through the assurance of learning process in each unit.

<table>
<thead>
<tr>
<th>On successful completion of this unit students can:</th>
<th>Graduate Attributes addressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Characterise pore fluid from calculated AVO reconnaissance attributes</td>
<td>◾ ◾ ◾</td>
</tr>
<tr>
<td>2 Estimate elastic anisotropic parameters from seismic data</td>
<td>◾ ◾ ◾</td>
</tr>
<tr>
<td>3 Generate well tie (seismic to log correlation)</td>
<td>◾ ◾ ◾</td>
</tr>
<tr>
<td>4 Discuss the inversion errors from performed acoustic inversion of seismic data</td>
<td>◾ ◾ ◾</td>
</tr>
</tbody>
</table>

Curtin’s Graduate Attributes
- Apply discipline knowledge
- Thinking skills (use analytical skills to solve problems)
- Information skills (confidence to investigate new ideas)
- Communication skills
- Technology skills
- Learning how to learn (apply principles learnt to new situations)
- Professional Skills (work independently and as a team)
- International perspective (value the perspectives of others)
- Cultural understanding (value the perspectives of others)
- Professional Skills (confidence to tackle unfamiliar problems)
- (confidence to tackle unfamiliar problems)
- Professional Skills (confidence to tackle unfamiliar problems)
- Professional Skills (confidence to tackle unfamiliar problems)

Find out more about Curtin’s Graduate attributes at the Office of Teaching & Learning website: ctl.curtin.edu.au

Learning Activities
All the class time is organised into lectures and workshops. Lectures will provide essential material for the unit, and will also provide ample opportunities for interactive learning. In addition, some lecture time will be dedicated to in class exercises, which will prepare the students for solving problems. Student’s skill in solving these problems will be assessed in the final in class test.

Workshops are designed to develop hands-on skills in quantitative interpretation of seismic data using industry-standard computer software.
Learning Resources
Recommended texts
You do not have to purchase the following textbooks but you may like to refer to them.

Other resources
Lecture notes, slides and additional references will be available on Blackboard.

Assessment
Assessment schedule

<table>
<thead>
<tr>
<th>Task</th>
<th>Value %</th>
<th>Date Due</th>
<th>Unit Learning Outcome(s) Assessed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid Semester Presentation</td>
<td>20 percent</td>
<td>Week: 9 Day: Monday Time: TBA</td>
<td>1,3,4</td>
</tr>
<tr>
<td>End of semester submission of Portfolio</td>
<td>50 percent</td>
<td>Week: 14 Day: TBA Time: TBA</td>
<td>1,3,4</td>
</tr>
<tr>
<td>End of semester test</td>
<td>30 percent</td>
<td>Week: 14 Day: TBA Time: TBA</td>
<td>1,2,3</td>
</tr>
</tbody>
</table>

Detailed information on assessment tasks

1. You will be required to give a short power-point presentation in front of the class on one of the given topics. The details and the topics will be given in the class.
2. You will need to hand over the portfolio of your lab work. The details will be explained at the workshop.
3. You will be required to sit an in-class test (open book) covering a range of theoretical topics.

Pass requirements
Every student must give the presentation and pass the other two assessments. All the assessments have to be handed in via Blackboard.

Fair assessment through moderation
Moderation describes a quality assurance process to ensure that assessments are appropriate to the learning outcomes, and that student work is evaluated consistently by assessors. Minimum standards for the moderation of assessment are described in the Assessment and Student Progression Manual, available from policies.curtin.edu.au/policies/teachingandlearning.cfm

Late assessment policy
This ensures that the requirements for submission of assignments and other work to be assessed are fair, transparent, equitable, and that penalties are consistently applied.

1. All assessments students are required to submit will have a due date and time specified on this Unit Outline.
2. Students will be penalised by a deduction of ten percent per calendar day for a late assessment submission (eg a mark equivalent to 10% of the total allocated for the assessment will be deducted from the marked value for every day that the assessment is late). This means that an assessment worth 20 marks will have two marks deducted per calendar day late. Hence if it was handed in three calendar days late and given a mark of 16/20, the student would receive 10/20. An assessment more than seven calendar days overdue will not be marked and will receive a mark of 0.

Assessment extension
A student unable to complete an assessment task by/on the original published date/time (eg examinations, tests) or due date/time (eg assignments) must apply for an assessment extension using the Assessment Extension form (available from the Forms page at students.curtin.edu.au/administration/) as prescribed by the Academic Registrar. It is the responsibility of the student to demonstrate and provide evidence for exceptional circumstances beyond the student's control that prevent them from completing/submitting the assessment task.

The student will be expected to lodge the form and supporting documentation with the unit coordinator before the assessment date/time or due date/time. An application may be accepted up to five working days after the date or due date of the assessment task where the student is able to provide an acceptable explanation as to why he or she was not able to submit the application prior to the assessment date. An application for an assessment extension will not be accepted after the date of the Board of Examiners’ meeting.

Deferred assessments
If your results show that you have been granted a deferred assessment you should immediately check your OASIS email for details. Deferred examinations/tests will be held from 16/07/2015 to 17/07/2015. Notification to students will be made after the Board of Examiners’ meeting via the Official Communications Channel (OCC) in OASIS.

Supplementary assessments
Supplementary assessments are not available in this unit.

Referencing style
The referencing style for this unit is Chicago.

More information can be found on this style from the Library web site: library.curtin.edu.au.

Academic Integrity (including plagiarism and cheating)
Any conduct by a student that is dishonest or unfair in connection with any academic work is considered to be academic misconduct. Plagiarism and cheating are serious offences that will be investigated and may result in penalties such as reduced or zero grades, annulled units or even termination from the course.

Plagiarism occurs when work or property of another person is presented as one's own, without appropriate acknowledgement or referencing. Submitting work which has been produced by someone else (e.g. allowing or contracting another person to do the work for which you claim authorship) is also plagiarism. Submitted work is subjected to a plagiarism detection process, which may include the use of text matching systems or interviews with students to determine authorship.

Cheating includes (but is not limited to) asking or paying someone to complete an assessment task for you or any use of unauthorised materials or assistance during an examination or test.

For more information, including student guidelines for avoiding plagiarism, refer to the Academic Integrity tab in Blackboard or academicintegrity.curtin.edu.au.

Additional information
Enrolment
It is your responsibility to ensure that your enrolment is correct - you can check your enrolment through the eStudent option on OASIS, where you can also print an Enrolment Advice.

Student Rights and Responsibilities
It is the responsibility of every student to be aware of all relevant legislation, policies and procedures relating to their rights and responsibilities as a student. These include:

- the Student Charter
- the University's Guiding Ethical Principles
- the University's policy and statements on plagiarism and academic integrity
- copyright principles and responsibilities
- the University’s policies on appropriate use of software and computer facilities

Information on all these things is available through the University's "Student Rights and Responsibilities website at: students.curtin.edu.au/rights."
Student Equity

There are a number of factors that might disadvantage some students from participating in their studies or assessments to the best of their ability, under standard conditions. These factors may include a disability or medical condition (e.g. mental illness, chronic illness, physical or sensory disability, learning disability), significant family responsibilities, pregnancy, religious practices, living in a remote location or another reason. If you believe you may be unfairly disadvantaged on these or other grounds please contact Student Equity at eesj@curtin.edu.au or go to http://eesj.curtin.edu.au/student_equity/index.cfm for more information.

You can also contact Counselling and Disability services: http://www.disability.curtin.edu.au or the Multi-faith services: http://life.curtin.edu.au/health-and-wellbeing/about_multifaith_services.htm for further information.

It is important to note that the staff of the university may not be able to meet your needs if they are not informed of your individual circumstances so please get in touch with the appropriate service if you require assistance. For general wellbeing concerns or advice please contact Curtin’s Student Wellbeing Advisory Service at: http://life.curtin.edu.au/health-and-wellbeing/student_wellbeing_service.htm.

Recent unit changes

We welcome feedback as one way to keep improving this unit. Students are encouraged to provide unit feedback through eVALUate, Curtin’s online student feedback system (see evaluate.curtin.edu.au/info/).

To view previous student feedback about this unit, search for the Unit Summary Report at evaluate.curtin.edu.au/student/unit_search.cfm. See evaluate.curtin.edu.au to find out when you can eVALUate this unit.

Recent changes to this unit include:

N/A
Program calendar

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Tutorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.</td>
<td>Orientation</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>AVO attributes. AVO Classes. Exercises/tutorial</td>
<td>AVO attributes using field gathers</td>
</tr>
<tr>
<td>4.</td>
<td>Seismic inversion – basic principles. (1 hour)</td>
<td>Start of inversion workshop: borehole import, deviations, log edit</td>
</tr>
<tr>
<td>5.</td>
<td>Rock Physics, basic principles</td>
<td>Inversion continues (log edit, extract wavelet, start of correlation)</td>
</tr>
<tr>
<td>6.</td>
<td>Tuition Free Week</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Tuition Free Week</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>Rock physics, continues (Gassmann theory, computing moduli)</td>
<td>Inversion continues (finish correlation, build 2D model)</td>
</tr>
<tr>
<td>9.</td>
<td>Project presentations</td>
<td>2D inversion, error analysis</td>
</tr>
<tr>
<td>11.</td>
<td>Seismic anisotropy II. NMO, velocity analysis and AVO in VTI media</td>
<td>Fluid substitution exercise with field data</td>
</tr>
<tr>
<td>13.</td>
<td>Tutorial</td>
<td>AVO inversion (elastic impedance, Lambda-rho)</td>
</tr>
<tr>
<td>14.</td>
<td>Review</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>Study Week</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>Examinations</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>Examinations</td>
<td></td>
</tr>
</tbody>
</table>